Cooperative Games

Lecture 3: The core

Stéphane Airiau
ILLC - University of Amsterdam

The Bondareva Shapley theorem:
a characterization of games with non-empty core.

The theorem was proven independently by
O. Bondareva (1963) and L. Shapley (1967).

- Characterize the set of games with non-empty core (Bondareva Shapley theorem), and we will informally introduce linear programming
- Application of the Bondareva Shapley theorem to market games.

Let $\mathcal{C} \subseteq N$. The characteristic vector $\chi_{\mathcal{C}}$ of \mathcal{C} is the member of \mathbb{R}^{N} defined by $\chi_{\mathcal{C}}^{i}=\{1$ if $i \in \mathcal{C}$
A map is a function $2^{N} \backslash \emptyset \rightarrow \mathbb{R}_{+}$that gives a positive weight
to each coalition.
Definition (Balanced map)
A function $\lambda: 2^{N} \backslash \emptyset \rightarrow \mathbb{R}_{+}$is a balanced map iff
$\sum_{e \subseteq N} \lambda(\mathcal{C}) \chi е=\chi_{N}$
A map is balanced when the amount received over all the coalitions containing an agent i sums up to 1 .
Example: $n=3, \lambda(\mathcal{C})=\left\{\begin{array}{l}\frac{1}{2} \text { if }|\mathcal{C}|=2 \\ 0 \text { otherwise }\end{array}\right.$

	1	2	3
$\{1,2\}$	$\frac{1}{2}$	$\frac{1}{2}$	0
$\{1,3\}$	$\frac{1}{2}$	0	$\frac{1}{2}$
$\{2,3\}$	0	$\frac{1}{2}$	$\frac{1}{2}$

Each of the column sums up to 1 .
$\frac{1}{2} \chi_{\{1,2\}}+\frac{1}{2} \chi_{\{1,3\}}+\frac{1}{2} \chi_{\{2,3\}}=\chi_{\{1,2,3\}}$

173 Stéphane Airiau (ILLC)-Cooperative Games Lecture 3: The core 4)

Notations

- Let $\mathcal{V}(N)=\mathcal{V}$ the set of all coalition functions on 2^{N}
- Let $\mathcal{V}_{\text {Core }}=\{v \in \mathcal{V} \mid \operatorname{Core}(N, v) \neq \emptyset\}$.

Can we characterize $\mathcal{V}_{\text {Core }}$?
Core $(N, v)=\left\{x \in \mathbb{R}^{n} \mid x(\mathcal{C}) \geqslant v(\mathcal{C})\right.$ for all $\left.\mathcal{C} \subseteq N\right\}$
The core is defined by a set of linear constraints.
\rightleftharpoons The idea is to use results from linear optimization.

A feasible solution is a solution that satisfies the constraints.
Example: maximize $8 x_{1}+10 x_{2}+5 x_{3}$
subject to $\left\{\begin{array}{r}3 x_{1}+4 x_{2}+2 x_{3} \leqslant 7 \text { (1) } \\ x_{1}+x_{2}+x_{3} \leqslant 2 \text { (2) }\end{array}\right.$

- $\langle 0,1,1\rangle$ is feasible, with objective function value 15 .
- $\langle 1,1,0\rangle$ is feasible, with objective function value 18.

The dual of a LP: finding an upper bound to the objective function of the LP.
$(1) \times 1+(2) \times 6 \rightleftharpoons 9 x_{1}+10 x_{2}+8 x_{3} \leqslant 19$
$(1) \times 2+(2) \times 2 \Rightarrow 8 x_{1}+10 x_{2}+6 x_{3} \leqslant 18$
The coefficients are as large as in the obective function,
\Rightarrow the bound is an upper bound for the objective function.
Hence, the solution cannot be better than 18, and we found one, Problem solved! \downarrow

Primal	Dual
$\left\{\begin{array}{l}\max c^{T} x \\ \text { subject to }\end{array}\left\{\begin{array}{l}A x \leqslant b, \\ x \geqslant 0\end{array}\right.\right.$	$\left\{\begin{array}{l}\min y^{T} b \\ \text { subject to }\left\{\begin{array}{l}y^{T} A \geqslant c^{T}, \\ y \geqslant 0\end{array}\right.\end{array}\right.$

Theorem (Duality theorem)

When the primal and the dual are feasible, they have optimal solutions with equal value of their objective function.

We consider the following linear programming problem:
$(L P)\left\{\begin{array}{l}\min x(N) \\ \operatorname{subject} \text { to } x(\mathcal{C}) \geqslant v(\mathcal{C}) \text { for all } \mathcal{C} \subseteq N, S \neq \emptyset\end{array}\right.$
$v \in \mathcal{V}_{\text {core }}$ iff the value of $(L P)$ is $v(N)$.
The dual of (LP):
$(D L P)\left\{\begin{array}{l}\max \sum_{\mathfrak{e} \subseteq N} y_{\mathrm{e} v}(\mathcal{C}) \\ \text { subject to }\left\{\begin{array}{l}\sum_{\mathfrak{e} \subseteq N} y_{\mathrm{C}} \chi_{\mathfrak{e}}=\chi_{N} \text { and }, \\ y_{\mathrm{e}} \geqslant 0 \text { for all } \mathcal{C} \subseteq N, \mathcal{C} \neq \emptyset\end{array}\right.\end{array}\right.$
It follows from the duality theorem of linear programming: (N, v) has a non empty core iff $v(N) \geqslant \sum_{\mathfrak{e} \subseteq N} y_{\mathfrak{e} v}(\mathcal{C})$ for all feasible vector ($\left.y_{\mathcal{e}}\right)_{\mathcal{e} \subseteq N}$ of (DLP).

Recognize the balance map in the constraint of (DLP)

4téphane Airiau (ILLC) - Cooperative Games

Application to Market Games

A market is a quadruple (N, M, A, F) where

- N is a set of traders
- M is a set of m continuous good
- $A=\left(a_{i}\right)_{i \in N}$ is the initial endowment vector
- $F=\left(f_{i}\right)_{i \in N}$ is the valuation function vector
- $v(S)=\max \left\{\sum_{i \in S} f_{i}\left(x_{i}\right) \mid x_{i} \in \mathbb{R}_{+}^{m}, \sum_{i \in S} x_{i}=\sum_{i \in S} a_{i}\right\}$
- we further assume that the f_{i} are continuous and concave

Theorem

Every Market Game is balanced

3tephane Airiau (ILLC)-Cooperative Games

Coalition Structure

Definition (Coalition Structure)
A coalition structure (CS) is a partition of the grand coalition into coalitions
$\mathcal{S}=\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right\}$ where $\cup_{i \in\{1 . k\}} \mathcal{C}_{i}=N$ and $i \neq j \Rightarrow \mathcal{C}_{i} \cap \mathcal{C}_{j}=\emptyset$ We note \mathscr{S}_{N} the set of all coalition structures over the set N.
ex: $\{\{1,3,4\}\{2,7\}\{5\}\{6,8\}\}$ is a coalition structure for $n=8$ agents.
We will study three solution concepts: the bargaining set, the nucleolus and the kernel. They form the "bargaining set family" and we will see later why. In addition, the definition of each of these solution concepts uses a CS.

We start by defining a game with coalition structure, and see how we can define the core of such a game. Then, we'll start studying the bargaining set family.

Definition (core of a game (N, v))
The core of a TU game (N, v) is defined as $\operatorname{Core}(N, v)=\left\{x \in \mathbb{R}^{n} \mid x(N) \leqslant v(N) \wedge x(\mathcal{C}) \geqslant v(\mathcal{C}) \forall \mathcal{C} \subseteq N\right\}$
Definition (TU game)
A TU game is a pair (N, v) where N is a set of agents and where v is a valuation function.

Definition (Game with Coalition Structures)
A TU-game with coalition structure (N, v, S) consists of
a TU game (N, v) and a $C S \mathcal{S} \in \mathscr{S}_{N}$.

- We assume that the players agreed upon the formation of \mathcal{S} and only the payoff distribution choice is left open.
- The CS may model affinities among agents, may be due to external causes (e.g. affinities based on locations).
- The agents may refer to the value of coalitions with agents outside their coalition (i.e. opportunities they would have outside of their coalition).
- (N, v) and $(N, v,\{N\})$ represent the same game.

The set of feasible payoff vectors for (N, v, \mathcal{S}) is
$X_{(N, v, \mathcal{S})}=\left\{x \in \mathbb{R}^{n} \mid\right.$ for every $\left.\mathcal{C} \in \mathcal{S} x(\mathcal{C}) \leqslant v(\mathcal{C})\right\}$.
Definition (Core of a game with CS)
The core $\operatorname{Core}(N, v, S)$ of (N, v, S) is defined by
$\left\{x \in \mathbb{R}^{n} \mid(\forall \mathcal{C} \in \mathcal{S}, x(\mathcal{C}) \leqslant v(\mathcal{C}))\right.$ and $\left.(\forall \mathcal{C} \subseteq N, x(\mathcal{C}) \geqslant v(\mathcal{C}))\right\}$

We have $\operatorname{Core}(N, v,\{N\})=\operatorname{Core}(N, v)$.
The next theorems are due to Aumann and Drèze.
R.J. Aumann and J.H. Drèze. Cooperative games with coalition structures, International Journal of Game Theory, 1974

Definition (Superadditive cover)
The superadditive cover of (N, v) is the game (N, \hat{v}) defined by
$\left\{\begin{array}{l}\hat{v}(\mathcal{C})=\max _{\mathcal{P} \in \mathscr{S}_{\mathcal{C}}}\left\{\sum_{T \in \mathcal{P}} v(T)\right\} \forall \mathcal{C} \subseteq N \backslash \emptyset \\ \hat{v}(\emptyset)=0\end{array}\right.$
We have $\hat{v}(N)=\max _{\mathcal{P} \in \mathscr{S}_{N}}\left\{\sum_{T \in \mathcal{P}} v(T)\right\}$, i.e., $\hat{v}(N)$ is the maximum value that can be produced by N. We call it the value of the optimal coalition structure.

- The superadditive cover is a superadditive game (why?).

Theorem

Let (N, v, \mathcal{S}) be a game with coalition structure. Then
a) $\operatorname{Core}(N, v, \mathcal{S}) \neq \emptyset$ iff $\operatorname{Core}(N, \hat{v}) \neq \emptyset \wedge \hat{v}(N)=\sum_{\mathcal{C} \in \mathcal{S}} v(\mathcal{C})$
b) if $\operatorname{Core}(N, v, \mathcal{S}) \neq \emptyset$, then $\operatorname{Core}(N, v, \mathcal{S})=\operatorname{Core}(N, \hat{v})$

Definition (Substitutes)
Let (N, v) be a game and $(i, j) \in N^{2}$. Agents i and j are substitutes iff $\forall \mathcal{C} \subseteq N \backslash\{i, j\}, v(\mathcal{C} \cup\{i\})=v(\mathcal{C} \cup\{j\})$.

A nice property of the core related to fairness:

Theorem

Let (N, v, \mathcal{S}) be a game with coalition structure,
let i and j be substitutes, and let $x \in \operatorname{Core}(N, v, \mathcal{S})$.
If i and j belong to different members of \mathcal{S}, then $x_{i}=x_{j}$.

- We introduced a stability solution concept: the core
- we looked at examples:
- individual games: some games have an empty core.
- classes of games have a non-empty core: e.g. convex games and minimum cost spanning tree games.
- We look at a characterization of games with non-empty
- Bargaining sets.

